
CHROM. 18 183

Note

Analytical separation of enantiomeric polygodials by gas chromatography of pyrrole derivatives

CHARLES J. W. BROOKS*, DAVID G. WATSON and W. JOHN COLE Chemistry Department, University of Glasgow, Glasgow G12 8QQ, Scotland (U.K.) (Received September 13th, 1985)

The natural drimenedial, (-)-polygodial^{1,2} (1), is of strong interest by virtue of its biological activities^{3,4}. The racemic dialdehyde is accessible by total synthesis⁵

and has been resolved⁶, but no productive partial synthesis of compound 1 has been reported. The phytotoxic (+)-enantiomer has to be excluded from samples of compound 1 used in biological tests⁶. We report a convenient method of analysis of the enantiomers via reactions that yield diastereomeric pyrroles. Studies of such reactions of compound 1 in aqueous media have been described earlier^{3,7}. We find that polygodial (100 μ g) in ethyl acetate (50 μ l) at 20°C reacts very rapidly with primary amines (5 molar proportions). Gas-liquid chromatography (GLC) of an aliquot of the solution leads to conversion of the initial products^{3,7} into less polar 6-enes (2) which afford good GLC peaks. The reaction products from polygodial and (-)amphetamine showed on thin-layer chromatography (cyclohexane-ethyl acetate 70/30) spots of R_F ca. 0.15 and 0.42. (Vacuum sublimation yielded a new major spot, R_F 0.67, due to compound 2a.) The more polar components, on GLC, gave the same peak as compound 2a: for analytical studies, aliquots of the reaction mixtures were directly suitable. The gas chromatograms in Fig. 1 show (a) separation of derivatives formed from (\pm) -polygodial and (-)-R-amphetamine; (b) characterisation of the product (compound 2a) of treatment of a leaf extract of Polygonum hydropiper L. with (-)-amphetamine; and (c) complete separation of diastereomeric pyrroles

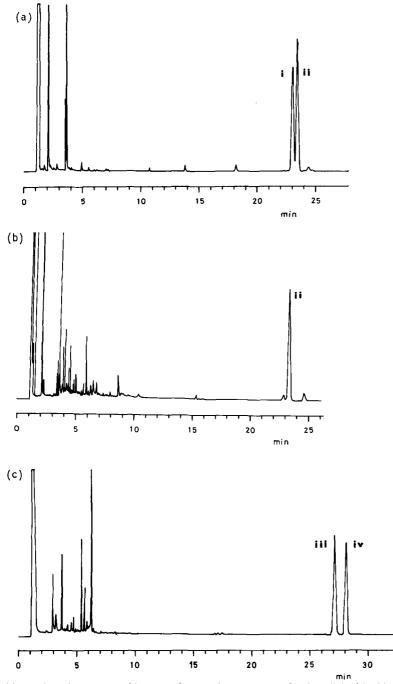


Fig. 1. Gas chromatographic traces for reaction products of polygodial with chiral amines. (a) Peak i (retention index, $I_{i} = 2475$) from (+)-polygodial/(-)-amphetamine, peak ii (I = 2480) from (-)-polygodial/(-)-amphetamine; (b) reaction products from treatment of extract of mature *Polygonum hydropiper* leaf with (-)-amphetamine; (c): products of reaction of (±)-polygodial with (±)-*p*-chloroamphetamine; peak iii, I = 2664; peak iv, I = 2676 (sequence of diastereomers not yet known). Column, 25 m × 0.32 mm I.D. CP Sil 5CB (bonded phase) fused silica (Chrompack, Middelburg, The Netherlands); column temperature, 190°C (a and b), 200°C (c); helium flow-rate, 3 ml/min (flame ionisation detector).

formed from polygodial and *p*-chloroamphetamine. Mass spectra (electron impact) of diastereomers were almost identical. The reactions described show promise for precise quantitative enantiomer analysis of polygodial and related dialdehydes.

ACKNOWLEDGEMENTS

We thank Dr J. A. Pickett (Rothamsted) for encouragement and for gifts of polygodial, Dr. A. A. Manian (NIMH, Rockville, MD, U.S.A.) for *p*-chloroamphetamine, and the SERC for a grant.

REFERENCES

- 1 C. S. Barnes and J. W. Loder, Aust. J. Chem., 15 (1962) 322.
- 2 Y. Asakawa and T. Takemoto, Experientia, 35 (1979) 1420.
- 3 M. D'Ischia, G. Prota and G. Sodano, Tetrahedron Lett., (1982) 3295.
- 4 Y. Fukuyama, T. Sato, I. Miura and Y. Asakawa, Phytochemistry, 24 (1985) 1521.
- 5 D. M. Hollinshead, S. C. Howell, S. V. Ley, M. Mahon, N. M. Ratcliffe and P. A. Worthington, J. Chem. Soc., Perkin Trans. I, (1983) 1579.
- 6 J. A. Pickett, personal communication.
- 7 G. Cimino, A. Spinella and G. Sodano, Tetrahedron Lett., (1984) 4151.